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ABSTRACT
In recent years, machine learning (ML) models have been widely
developed for building systems. For example, a number of ML mod-
els have been developed to predict the load demand of a building.
CurrentMLmodels commonly report snap-shot accuracy only. Prac-
titioners have difficulties in understanding how a model behaves in
usage, i.e., model accuracy may change during model usage. This
raises concerns in the ML-model deployment.

In this paper, we propose BuildChecks, a behavior testing method-
ology to systematically evaluate building load forecasting ML mod-
els in usage. The challenge of developing such a methodology is
to specify "what to evaluate", i.e., given a certain building load
forecasting model, what tests we shall apply to this model. We cat-
egorize three model-types of the building load forecasting models
and we propose three in-usage concerns. Our methodology speci-
fies the tests, i.e., for each model-type, the in-usage concerns that
should be tested. We develop an open-source BuildChecks platform
to materialize our behavior testing methodology. The BuildChecks
platform integrates the testing algorithms and four default real-
world building datasets. We use BuildChecks to test the behaviors
of two existing load forecasting models. As an example, while a
ML model has high accuracy throughout all buildings, BuildChecks
reports that in one building this ML-model has a cold start time of
45 days, yet in another building, the cold start time is three-fold
greater, 141 days – this can lead to a delay in model usage.
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1 INTRODUCTION
Buildings are major energy consumers and carbon emitters in mod-
ern society [26]. In the US, buildings account for over 40% of total
energy usage [2]. To better operate building systems and conserve
energy, building load forecasting plays an important role. Recently,
with the development of IoT and AI technologies, the building au-
tomation systems (BAS) have been transformed into information
supported decisionmaking systems. This provides ample opportuni-
ties to develop data-driven machine learning (ML) load forecasting
models for building operation and control [10, 15, 17, 18].

Current studies on ML models emphasize on new model de-
velopment under various contexts and application of ML algo-
rithms [11, 18, 27]. We notice that current ML models commonly
report snap-shot accuracy only. Practitioners have difficulties in
understanding how a model behave in-usage, i.e., model accuracy
may change during model usage. This raises concerns on deploying
ML models in practice. There are studies on improving model accu-
racy during usage for an individual ML model; yet practitioners are
more eager to understand and compare the behaviors of a wealth of
models. In this work, we argue that we need to test the behaviors
of building load forecasting models in-usage. Behavior testing (also
known as black-box testing) is a software engineering concept that
tests system capabilities by validating the input-output behavior,
without the knowledge of the internal structure [5]. In simple, be-
havior testing defines organized tests (i.e., what should (or should
not) be tested) for diverse scenarios. We, for the very first time,
bring behavior testing to ML models in smart buildings.

The challenge of developing behavior testing is to define “what
to evaluate”, i.e., given a building load forecasting model, what tests
we shall apply to this model. We categorize threemodel-types of the
building load forecasting models: a same model-type indicates that
the ML models have similar objectives and are expected to perform
in comparison. We propose three in-usage concerns. We develop a
behavior testing methodology, BuildChecks, which specifies the tests,
i.e., for each model-type, the in-usage concerns that are meaningful
to this model-type and should be tested. We develop a BuildChecks
platform to realize our behavior testing methodology. This platform
integrates four default building data sets and the algorithms for
behavior testing. We evaluate our proposed BuildChecks by testing
the behaviors of two existing building load forecasting models,
HK-ICC [18] and London-Residental [11].

BuildChecks reports test results and how to use the results de-
pends on users and is not in the scope of BuildChecks. Nevertheless,
we illustrate two simple examples, one from the perspective of an
ML model and one from the perspective of a data set: (1) Build-
Checks tests the HK-ICC model with a set of retrain strategies and
BuildChecks reports (Figure 3) that the the ADWIN detection algo-
rithm [6] maintains high accuracy in usage for the HK-ICC model;
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and (2) the EM dataset has a sub-period of four months where the re-
gion has a work-from-home (WFH) policy due to Covid-19. To serve
this special period, a model with short cold-start time is important.
BuildChecks can report the cold start time of ML models and our
evaluation shows that the cold start time of a London-Residential
model can be 42% to that of the HK-ICC model though the HK-ICC
model has higher accuracy.

In summary, the contribution of our paper is three-fold: (1) we
propose a behavior testing methodology to evaluate the ML models
for building load forecasting (§2). To the best of our knowledge,
we are the first to bring behavior testing, a software engineering
concept into ML model testing in buildings; (2) we develop a Build-
Checks platform to materialize our behavior testing methodology
(§3); and (3) we use BuildChecks to test the behaviors of a number
of models and we present two cases (§4) in the interest of space.

2 THE BUILDCHECKS METHODOLOGY
We define our behavior testing methodology from three organized
aspects (Figure 1 shows the BuildChecks methodology):

Selection of in-usage concerns: As said, in-usage concerns re-
fer to model accuracy change during usage. In-usage concerns have
been heavily studied in the ML community [22, 32–34]. We select
three typical ones and our methodology can be easily extended.

(1) Cold start [23, 29, 34]: History data needs to be accumulated
so that anMLmodel can be trained to an acceptable accuracy.
This time period is the cold start time. A shorter cold start
shows that the ML model can meet the engineering purposes
and be deployed at an (sometimes substantially) earlier time.

(2) Retrain strategy [7, 28, 32]: ML models face concept drifts
[14] in usage and need to be retrained to maintain accu-
racy. There are different types of retrain strategies and it is
important to figure out the suitable ones for a certain model.

(3) Catastrophic forgetting [19, 22, 33]: Many ML models have
internal mechanism for updating the model parameters to
learn new knowledge. They may forget existing learned
knowledge when learning new ones.

Building load forecasting model categorization:ML models
may not face the same in-usage concerns. For example, somemodels
(e.g., the HK-ICC model [18]) are not designed with an internal
model update mechanism and thus do not have the catastrophic
forgetting concern. To determine what in-usage concerns to test
for an ML model, we categorize ML models into three model-types
which are widely-accepted in building automation studies [31].

(1) Short-term forecasting with snapshot designs (SSF): Short-
term models are mostly studied and account for more than
84% of the building load forecasting models [9, 15].

(2) Short-term forecasting with online learning (SOF): There are
short-term models with internal mechanisms to online up-
date the model parameters [11, 20, 24]. Note that such online
update mechanisms differ from the retrain strategy since
online learning focus on local adjustment, yet the retrain
strategy will apply all (or a majority of) history data.

(3) Midterm/long-term forecasting (MLF) [1, 4].
Defining tests: We define tests based on the in-usage concerns

and themodel-types, i.e., for a certain model-type, whether a certain
in-usage concern should be or should not be tested.

Concerns
in Usage

Model Types
Cold Start Retrain 

Strategy
Catastrophic 

Forgetting

Short-term forecasting with 
snapshot design (SSF) √ √ N/A

Short-term forecasting with 
online learning (SOF) √ √ √

Middle\long-term forecasting 
(MLF) × √ √

√: It should be evaluated. ×: It is not meaningful to evaluated. N/A: Cannot evaluate. 

Figure 1: The BuildChecks Methodology

(1) Tests for SSF models: clearly, cold start and retrain strategy
should tested. The SSF model designs focus on generality,
not on local adjustment. As such, the catastrophic forgetting
concern cannot be tested for SSF models.

(2) Tests for SOF models: all in-usage concerns are to be tested.
(3) Tests for MLF models: it is not meaningful to test cold start

for MLF models since they have long service time and the
cold start period only has minimal influence.

3 THE BUILDCHECKS PLATFORM
We develop a platform to realize our behavior testing methodology.

Goals and BuildChecks design choices: The BuildChecks
platform serves two types of users: (1) those with their own building
data and (2) those without building data. Consequently, we have
two design goals: (i) To integrate certain default building datasets
into the platform to serve users without building data and (ii) To
integrate testing algorithms on cold-start, retrain strategy, and
catastrophic forgetting into the platform. In this paper, we omit
other goals, e.g., performance, scalability, etc., since they are not
directly related to realizing our methodology. The framework of
our platform is shown in Figure 2.

In the building automation community, datasets are usually not
open to public due to privacy concerns. BuildChecks should nei-
ther claim building data from users nor disclose its default building
datasets during tests. To this end, our framework consists of a
model testing layer and a building data layer to hold default build-
ing datasets. For users with their own data, the separation of the
building data layer from the model testing layer makes it easy for
the BuildChecks platform to be installed directly (without default
datasets) in their own servers where they can simply insert their
own data. For users without building data, they can submit their
models to BuildChecks, and we report results without disclosing
our default datasets.

We present the testing algorithms in the model testing layer.
• Cold start: We adopt the widely accepted stopping condition
(defined by ASHRAE [30]) for the cold start period, i.e., the
MLmodel accuracy should reach a threshold, CV-RMSE<30%.
We find the cold start period through a binary-search.

• Retrain strategy: We integrate three retrain strategies into
BuildChecks: (1) periodical retrain strategy; (2) retrain based
on a error rate-based concept drift detection algorithm, Drift
Detection Method (DDM) [12]; and (3) retrain based on a
data distribution-based concept drift detection algorithm
Adaptive Windowing (ADWIN) [6].

• Catastrophic forgetting: there are two standard online updat-
ing mechanisms for SOF and MLF, e.g., periodically online
update for shallow ML models and online fine-tuning for
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class Model:
def __init__():

// clarify variables and feature

model_type = “SOF”
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def _train():

// model training process

def _update_model():

// internal updating strategy

// (only for SOF and MLF)

Accuracy
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E
rr

o
r

51days

Cold Start Result

Time

Figure 2: The framework of BuildChecks.

Dataset Sites Sampled
rate

Chiller
Number

Building
Type Length

EM 2 15min, 1h 3, 3 Commercial 1.5 years
HI 9 1h 4 to 8 Commercial 2 years
AD 5 1day 5 Residential 4 years
SZ 1 30mins 6 Data center 1 year

Table 1: Dataset specification

DNN models. Accordingly, we implement two statistic built-
in functions for each of these categories.

BuildChecks implementation: We implement a prototype of
the BuildChecks platform (Figure 2). We implement the building
data layer using MySQL database. We integrate BuildChecks with
four default datasets that cover diverse buildings. The basic charac-
teristics of these datasets are shown in Table 1. We develop a data
supply service module, which executes data request management,
building dataset selection, as well as standard data preprocessing
tasks. We comment that we also standardize the coding format for
model sub-functions that are related to model evaluation.

4 CASE STUDIES
We use BuildChecks to evaluate the behaviors of two representative
models of SOF and SSF type:

• The London-Residential model [11]: this is a SOF model. The
model is based on LSTM neural network. More importantly,
this model introduces adaptive buffering and tuning modules
to handle contextual adaptation.

• The HK-ICC model [18]: this is an SSF model. It has an atten-
tion mechanism based on the Seq2Seq [25] neural network
to extract the short-term dynamic temporal load pattern.

Our metrics are the length of cold start period [13], theMean
Accuracy under retrain strategy [3, 14], and the Average forget-
ting for catastrophic forgetting, which is defined as the difference
between the accuracy when first learning a task, and the accuracy
decay after training one or more additional tasks [8, 21].

4.1 The London-Residential model
4.1.1 Evaluation results on cold start. As described in London-
Residential [11]), a base model would be trained at first, then the
base model would be online updated during its runtime. Therefore,
it is necessary to evaluate the cold start of the base model.

The cold start evaluation follows the prequential method [13],
which is a general methodology to evaluate learning algorithms
in streaming scenarios. As shown in Figure 3(a), the cold start of
the model is 84 days, 58 days, 138 days and 51 days in EM_1H,

EM_15min, HI (nine buildings) and SZ respectively. The model
achieves shortest cold start period on SZ could due to that the load
demand pattern in this data center dataset is relatively flat while
compared to other three tested buildings. Moreover, we note that
a shorter cold start does not mean greater accuracy in usage. The
accuracy in usage is 27% lower in EM_1H while compared to in HI,
although the cold start is shorter in EM_1H (84 days vs 138 days).

4.1.2 Evaluation results on retrain strategy. We discuss the different
retrain strategies and compare the overall accuracy performance.
The results are shown in Figure 3(b) and 3(c).

Periodically retrain. As shown in Figure 3(b), In EM_1H and SZ
building, which shows the benefit of periodically retrain is moderate
(within 5%). For EM_15min and HI, the model with periodic retrain
can improve the accuracy by 21% and 36%, respectively.

Triggered retrain. The model can be retrained triggered by con-
cept drift detection algorithms (DDM and ADWIN as introduced).
In Figure 3(c), We observe in HI, the median accuracy of model
retrained based on drift detection algorithms can improve the accu-
racy in use by 29% and 14% for ADWIN and DDM. The accuracy
improvement in other three datasets is minor (within 6%). Particu-
larly, there is a very slight accuracy decay in SZ data center.

We observe the benefits of retrain strategy in the model. The
mean accuracy improvements are 7.3%, 11.6%, and 9.3% for the
periodically retrain strategy, the ADWIN strategy, and the DDM
strategy. The model has online update mechanisms. We note that
the retrain strategies may overlap with the online updating mecha-
nisms internal to a SOF model. Nevertheless, the main objective of
BuildChecks is to test ML models and report results. It is beyond
the scope of BuildChecks to explore such overlap.

4.1.3 Evaluation results on catastrophic forgetting. The evaluation
process follows the online continual learning setting [21]. London-
Residential was first trained to achieve CV-RMSE < 30% and then the
model keeps updating following its internal updating mechanism.

Average forgetting. Figure 3(d) shows how much of the acquired
knowledge the model has forgotten during the 12 times of model
update (we set the update frequency is 10 days as defined in London-
Residential [11]). During the first five updates, the forget ranges
from -98 to 0 for all tested buildings. This reveals not only the model
does not forget learned knowledge, but also enhances its prediction
capacity. After that, London-Residential model performs differently
among the datasets. The forget value is gradually increasing to over
378 in HI after model update 12 times, which illustrates the model
is getting worse on the previous load context.
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Figure 3: (a) The length of cold start period; (b) The Accuracy as retrained periodically; (c) The accuracy as retrained by two
triggered strategies; (d) The forget measured by the end of each update.
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Figure 4: (a) The length of cold start period; (b) The accuracy
as retrained by two triggered strategies.

4.1.4 Brief summary. Following BuildChecks, London-Residential
was evaluated in all three behavior tests. For the cold start, the
model has a relatively short cold start in the SZ data center building
(within 5 weeks), while on the HI residential buildings is larger than
17 weeks. For the retrain strategy, BuildChecks illustrates that all
the three tested retrain strategies can achieve moderate accuracy
improvement (within 10% on average). For catastrophic forgetting,
the model in HI is progressively worse over time. Yet there is no
significant forgetting in other tested buildings.

4.2 The HK-ICC model
As a SSF model, cold start and retrain strategy are evaluated.

Evaluation results on cold start.We can observe in Figure 4(a) that
the cold start is 93 days, 85days, 141 days and 45 days for the tested
datasets (SZ is still the shortest). In the two buildings in EM, the
curves have a rebound tendency in the third month, we infer the
cold start of this model could be effected by the COVID-19 WFH
(work from home) in this period.

Evaluation results on retrain strategy. All the retrain strategies
perform well in the HK-ICC evaluation. We only discuss the trigger-
based strategy since it can achieve greater accuracy than periodical
strategy. The results are shown in Figure 4(b). The medium error
of the ADWIN-based retrain is 167, 109, 244, and 86 for the four
datasets respectively, and the performance is slightly better than
DDM (about 2%). On the other hand, the proportion of outliers
(error rate > 95%) in DDM based retrain is less than ADWIN (about
19%), which shows the robustness of DDM in our test buildings.

Brief summary. HK-ICC also has a shorter cold start time in the
SZ data center buildings. And all the retrain strategies can bring in
much greater accuracy improvement (22% on average). The report
shows that the triggered strategy is the best choice for HK-ICC,
especially in EM buildings.

5 RELATEDWORK
Building load forecasting is important for efficient building op-
erations [31]. Recently, many ML models have been developed [31].
As compared to the physical and statistic models, ML models are
known to be less explainable. Moreover, ML models are commonly
evaluated by snap-short accuracy only. Thus, practical adoption is
still slow. This paper differs from the efforts in explaining [16] the
behaviors of an ML model; instead, we propose to standardize the
evaluation on ML in-usage concerns; thus allowing selection and
comparison of ML models. The idea was sparked by the behavior
testing concept from software engineering.

In-usage concerns of ML models have been studied in ML
community, e.g., in recommendation systems, question answering
system, etc. It is known that the accuracy may change due to a
number of reasons. To warm up the cold start process, embedding
techniques have been proposed [34]. Retrain strategies have been
heavily studied, e.g., an advanced one is a meta-learning strategy
[32]. Replay of historical samples has been proposed [22, 33] to
avoid catastrophic forgetting. We borrow these in-usage concerns
into the definition of our behavior testing methodology.

6 CONCLUSION
In this paper, we presented BuildChecks, a behavior testing method-
ology and an associated platform to evaluate the behaviors of ML-
based building load forecasting models. BuildChecks can output
reports on the model in-usage concerns such as cold start, retrain
strategy, and catastrophic forgetting. BuildChecks complements the
understanding of the ML models from the perspective of model ac-
curacy to a richer context. We use BuildChecks to test the behaviors
of two models in different buildings. For the London-Residential
model, BuildChecks reports that a retrain strategy is meaningful for
the HI building (e.g., with 36% improvement), yet the improvement
is immaterial for the other three building datasets.

We comment that BuildChecks is designed to provide guidelines
on the behavior testing process so that models can be comprehen-
sively compared (it is less an objective to explain behaviors). Clearly,
there are different angles to define the testing methodology. It is
our future work to investigate other testing criteria.
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