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ABSTRACT
Building load data, i.e., building electricity demands, are important
formany downstream applications such as load forecasting, demand
response, and others. Recent applications, in particularly, those
based on machine learning models, require a large amounts of
data. Unfortunately, many buildings do not have sufficient data. To
augment data, recent schemes are relying on generative adversarial
networks (GANs). GAN-based schemes can generate new samples
for the same distribution, i.e., to enrich data diversity. However,
they are not suitable for augmenting the data with insufficient
data distributions, e.g., a data shortage caused by insufficient time
coverage, a common problem for new buildings. This paper aims
to address this problem.

We propose a decomposition-based data augmentation scheme.
Intrinsically, decomposition-based schemes assume that time-series
data consist of several components. We analyze data from 407
buildings to understand whether and what components exist. This
analysis gives us prior knowledge of the decomposable components.
We then develop DAST with appropriately designed decomposition,
augmentation, and combination schemes. We evaluate DAST using
six real-world buildings, and show that the distribution of the data
augmented by DAST matches the distribution of raw data and
reduces the error by 47.8% as compared to state-of-the-art GAN-
based schemes. We apply the data augmented by DAST to two
building load forecasting tasks and find a 46.2% reduction in errors
relating to forecasting.
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1 INTRODUCTION
The building electrical load (or "the building load" for short) refers to
the electricity demand of a building. The building load is important
for many applications, e.g., electricity consumption forecasting
[15, 16, 29], waste identification [36], demand response [24], and
others. However, for certain applications, particularly those based
on machine learning, there is commonly a shortage of data.

To address the data shortage problem, data augmentation (DA)
schemes have been proposed. For example, generative adversarial
networks (GANs)-based schemes have been proposed for buildings,
e.g., to augment data for load forecasting [2, 35], HVAC control
[12, 28], and other purposes. GAN-based schemes are suitable for
generating new samples for the same distribution; i.e., they can
enrich data diversity so that ML models can be trained to avoid
the problem of overfitting. GAN-based schemes, however, are not
suitable for augmenting the data with insufficient data distribution.

This paper aims to address the problem of data augmentation for
building load data with insufficient distribution of data, particularly,
the situation of data shortages caused by insufficient time coverage
in the collecting of data. This is common in practice. For example,
new buildings have short data collection periods, e.g., two weeks.
The building operators want to apply machine learning applications
but they have yet to see full data distribution. In this paper, we lever-
age decomposition-based (DA) schemes [43]. In decomposition-
based DA schemes, the assumption is that the data are synthesized
by and can be decomposed into several components. A set of typical
components, e.g., trend, seasonal, cyclical, and remainder have been
studied [20]; and various decomposition techniques [6, 7] and data
augmentation techniques for specific components [3, 13, 25] have
been developed. To apply decomposition-based DA schemes in our
scenario, the first challenge is to validate whether the building load
data are indeed composed of well-studied components; and the sec-
ond challenge is to develop and apply appropriate decomposition
and augmentation schemes.
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In this paper, we first analyze 407 building load data from the
open source Genome project [34]. Our analysis shows that three
components widely exist in certain buildings: (1) a daily-load com-
ponent, reflecting daily variations. This is a repeated and periodic
component; (2) a seasonal context component, reflecting yearly
variations (e.g., summer, winter, etc.). This is also a repeated and
periodic component; and (3) an irregular component, reflecting
short irregular influences such as noises. These three components
widely exist in certain types of buildings, which make up 76% of
all buildings. For other buildings, our analysis shows that we need
additional knowledge, e.g., about functional events. In this paper,
we emphasize a problem in which we do not assume that we have
extra knowledge beyond building load data, and we leave further
investigations for future work. Our analysis demonstrates that we
can apply decomposition-based DA schemes and quantify prior
knowledge for decomposition.

We then propose DAST, a new decomposition-based DA scheme
for building load data. The objective is to minimize the distance be-
tween the distribution of the generated synthetic load and the distri-
bution of the real data in the target building. DAST has three phases:
(1) load decomposition: to decompose the three abovementioned
components based on the classical season-trend decomposition
(STL) algorithm; (2) data augmentation: to augment the daily-load
component using a clustering-assisted pattern mixing method; to
augment the seasonal context component using a domain trans-
lation algorithm; and to augment the irregular component using
a widely used kernel density estimation (KDE) scheme; and (3)
component combination: to recombine the augmented components
through a contrastive learning algorithm.

We evaluate DAST in two dimensions: (1) we study whether the
generated synthetic data distribution and the real-world distribu-
tion are close. We use both quantitative and qualitative measures
on the distance between distributions, i.e., maximum mean dis-
crepancy (MMD) and t-SNE visualization. Our results show that
DAST outperforms state-of-the-art GAN-based schemes by 47.8%;
and (2) we study whether the data augmented by DAST can better
support downstream applications. We develop two case studies by
applying DAST to a load forecasting model training task and a load
forecasting model testing task. The result is that DAST outperforms
state-of-the-art GAN-based schemes by 46.2%.

The contributions of the paper can be summarized as follows:

• We for the first time study a building data augmentation
problem where there is insufficient data distribution. This
problem is important in practice, e.g., new buildings.

• We demonstrate that we can apply decomposition-based DA
schemes by analyzing data from 407 buildings, and quantify
the prior knowledge about three decomposable components
in certain types of buildings.

• We develop DAST, a decomposition-based DA scheme with
carefully designed sub-schemes on decomposition, augmen-
tation, and combination.

• We evaluate DAST using real-world data. We further present
case studies to show that the data augmented by DAST can
improve the accuracy of downstream applications.

2 BACKGROUND AND RELATEDWORK
Building load and building data augmentation: Given a build-
ing and its equipment, building loads can be measured using smart
meters. It depends on the behavioral and environmental factors [44].
Behavioral factors relate to occupant behaviors, e.g., the number
of occupants, occupant electricity requirements [40], office hours
and arrival/departure periods [36], functional events [33], and oth-
ers. Environmental factors include diurnal rhythms [36], outdoor
weather conditions [36], seasonal changes [11], and others.

However, it is common to have a shortage of building load data.
Data augmentation (DA) [1, 42] refers to the methods for augment-
ing the diversity of the data without collecting data. Building load
data are time-series data. DA for time-series data includes basic
technologies such as random transformation [42] and pattern mix-
ing [23]; as well as advanced approaches such as generative models,
e.g., GANs, which use the feature distributions in datasets to gener-
ate new samples [21], and decomposition-based methods, which
first decompose the data into components, then augment the data
for each component, and finally assemble a new time-series [43].

Studies have been conducted on building data augmentation.
TimeGAN was developed to generate building load profiles for
HVAC control [12]. Wasserstein GAN was developed to generate
time-series energy data for large buildings [35]. Conditional GAN
was developed to generate load data in the multiple buildings [2].
Current studies rely heavily on GAN-based schemes [21]. GAN-
based schemes are suitable for generating new samples given the
data distribution, i.e., to enrich data diversity. With enriched data,
machine learning models, for example, can be trained to avoid
overfitting problems.

GAN-based schemes, however, are not suitable for generating
data with insufficient data distribution, i.e., a data shortage caused
by insufficient time coverage, a situation that is common in new
buildings. Addressing this problem is the aim of this paper.

Decomposition-based Data Augmentation: A
decomposition-based DA scheme assumes that the time-series
can be regarded as a collection of observations with several
components, each representing one of the underlying categories of
patterns. The typical components are [43]: (1) trend components:
reflecting long-term progression; (2) seasonal components: reflect-
ing repeated and periodic fluctuations; (3) cyclical components:
reflecting repeated and non-periodic fluctuations; and (4) irregular
components: reflecting irregular influences, e.g., noise.

Intrinsically, the decomposition-based DA schemes [13, 25] as-
sume that components exist. With prior knowledge of the com-
ponents, augmenting the data of each component can be a more
targeted process. In many practical applications, components exist
and prior knowledge can be analyzed.

In addition to the division of components mentioned above,
time-series can also be decomposed into multiple signals with dif-
ferent frequency ranges and amplitudes, which is widely applied
in frequency-domain augmentation [47] for non-linear signals.

3 ANALYZING THE COMPONENTS OF A
BUILDING LOAD TIME-SERIES

As mentioned, building load is influenced by environmental factors
(e.g., diurnal rhythms, climate) and occupant behaviors (e.g., the
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number of occupants, office hours). To apply decomposition-based
DA, we need to study how these factors can be classified into the
aforementioned typical components in decomposition-based DA.
Our analysis in this section serves this purpose.

Dataset:We analyze the building load data from Genome [34],
an open-source building data dataset. This dataset contains hourly
electrical meter data from 1636 buildings for two years (from 2016
January to 2017 December). The Genome dataset covers the USA,
Canada, European countries, and others. The primary use of the
buildings can be classified into six types: Education, Office, Assem-
bly, Lodging, Public services, and Others. In this paper, we study the
first five types of buildings. We note that data is missing for some
of the buildings, which can have a negative effect on our analysis.
We remove those buildings for which more than 1% of the data are
missing. For the sake of brevity, we also focus on the buildings in
the USA, although we plan to analyze buildings in other countries
in the future. We ended up with 407 buildings for our analysis.

Analysis:We now study whether building data are composed
of the aforementioned components.

The Trend Component: reflects long-term progression in the build-
ing in terms of its functions and occupant supports. To estimate the
trend component, in addition to a time-series of building load data,
additional knowledge on the building is needed, e.g., the rate at
which equipment is aging. Since we do not have additional knowl-
edge, we do not differentiate this component. As we show later in
our analysis, other components dominate the building load data
and the impact of the trend component is minimal, even if it exists.

The Seasonal Component: reflects repeated and periodic fluctua-
tions. We observe two types of repeated and periodic fluctuations:

(1) Daily-load: is the load variation in a period of a day (see an
example in Figure 1). This reflects both behavioral (e.g., office hours)
and environmental (e.g., diurnal rhythms) factors. The Lawrence
Berkeley National Laboratory (LBNL) proposed a five-parameter
method [36] that, given building load time-series data, estimates the
proportion of daily loads. The five parameters are (1) the base load,
(2) the rise time, (3) the peak load, (4) the high-load duration, and
(5) the fall time. We develop a simple rule-based traversal algorithm
to roughly detect these parameters and thus, the daily loads.

In Table 1, we show the proportion of the daily-load component
for each building type, denoted by 𝑅𝑎𝑡𝑖𝑜𝑑 . For example, in Educa-
tion buildings 𝑅𝑎𝑡𝑖𝑜𝑑 = 91%, i.e., 91% of the building load data in
Education buildings have daily periods. This conforms to intuition
since Education buildings have clear daily activities. Thus, Educa-
tion buildings contain a daily-load component. On the contrary, in
Lodging buildings 𝑅𝑎𝑡𝑖𝑜𝑑 = 68%. This means that many Lodging
buildings do not contain a clear daily-load component.

Table 1: The statistics of the components in the 407 buildings.

Building type 𝑅𝑎𝑡𝑖𝑜𝑑 𝑅𝑎𝑡𝑖𝑜𝑠 𝑅𝑎𝑡𝑖𝑜𝑖𝑟

*Education (47%) 91% 86% 94%
*Public (17%) 87% 88% 91%
Assembly (14%) 78% 65% 97%
*Office (12%) 88% 89% 95%
Lodging (9%) 68% 84% 97%

The three types (76%) 89% 86% 93%

(2) Seasonal context: is the load variation in the period of a year
that contains multiple (e.g., four) seasons (see an example in Figure
2). This reflects both behavioral (e.g., changes in dress) and environ-
mental (e.g., climate switch) factors. We design a simple statistical
algorithm to detect the load seasonal variations in the load. This
algorithm estimates the similarity in the building load data across
multiple years. If the load data in multiple years are similar, then
we say that there is seasonal context in this building load data. This
is a rough estimation, and we conduct this statistic in the first year
and the second year (data on the buildings in the Genome are two
years in length). In detail, the yearly-level similarity is calculated
using a normalized Euclidean distance with the threshold set to
0.2 at the monthly granularity. Note that our goal here is to esti-
mate the proportion of buildings with seasonal contexts, not to
accurately determine the seasonal contexts. From our observation,
it is apparent that buildings with seasonal characteristics exhibit
consistent patterns in their daily-load during different seasons, such
as winter and summer. For example, Figure 2 shows that the pattern
on August 19, 2016 appears to be a scaled version of the pattern
observed on March 5, 2016. This observation indicates the presence
of seasonal context in this specific building.

In Table 1, we show the proportion comprised by the seasonal
context component for each building type, denoted by 𝑅𝑎𝑡𝑖𝑜𝑠 . For
example, in Education buildings, 𝑅𝑎𝑡𝑖𝑜𝑠 = 83%, i.e., 83% of Edu-
cation buildings show load variations with changes in seasonal
context. Thus, Education buildings contain a seasonal context com-
ponent. By contrast, in Assembly buildings 𝑅𝑎𝑡𝑖𝑜𝑠 = 65%.

The Cyclical Component: reflects repeated and non-periodic fluc-
tuations. This may be due to human events (e.g., multi-day confer-
ence events) or environmental factors of weather conditions that
are longer than one day (e.g., wildfire, typhoon). For example, in
Lodging buildings, the proportion of the daily-load is 68%. We con-
jecture that there are cyclical components. We investigated some
data in detail and we see building loads as in Figure 3, even though
we cannot tell the exact reason/event giving rise to the load. This
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is a multi-day building load and such events do not appear periodi-
cally. Capturing cyclical components requires additional knowledge
(e.g., building activity schedules). In this paper, we assume that we
do not have such additional knowledge. Thus, we cannot decom-
pose cyclical components. We leave the decomposition of cyclical
components to a future work.

The Irregular Component: reflects noises for a short duration,
i.e., spike/dip loads within a stable load period (see the example
in the left side of Figure 4). We develop a simple smooth window
algorithm to detect irregular components. This algorithm performs
auto-regression in a window to self-construct regular loads and
identify the irregular components (see the right side of Figure 4).

In Table 1, we show the proportion of the irregular components
for each building type denoted by 𝑅𝑎𝑡𝑖𝑜𝑖𝑟 , i.e., the proportion of
days with obvious noise. We observe that all building types have
irregular components.

Summary: To apply decomposition-based DA, we need to show
that components do exist in building load data and we need prior
knowledge of the components. Our analysis in Table 1 shows that
the daily-load component, seasonal context component, and irreg-
ular component are widely present in Education, Office, and Public
buildings. No additional knowledge is needed for these three compo-
nents. Education, Office, and Public buildings make up the majority
of buildings (76%). This is the fitted scenario for this paper. There
are buildings with other components, e.g., cyclical components. Our
scheme is not suitable for those buildings. With additional prior
knowledge, more fine-grained decomposition-based DA schemes
can be developed, which we will explore in a future work.

4 DESIGN OVERVIEW
Problem Statement: We aim to solve the building load data aug-
mentation problem for buildings with an insufficient distribution
of data, i.e., a shortage of data caused by insufficient time coverage,
which is common for new buildings with a short data collection
period. Our objective is to minimize the distance between the dis-
tribution of the synthetic load and the distribution of the real data.

We first present the notations for daily-load, seasonal context
and irregulars. Let 𝑝 be a daily-load. Note that a seasonal context is
intrinsically a stretching or a shrinking of a daily-load. For exam-
ple, the spring season and summer season have similar daily-load
patterns, yet the summer season stretches the electricity load (see
Figure 2). As a result, we can let 𝐶 (𝑝) be a daily-load with a sea-
sonal context. We also use 𝐶𝑠𝑝𝑟𝑖𝑛𝑔 (𝑝), to 𝐶𝑤𝑖𝑛𝑡𝑒𝑟 (𝑝) to denote the
daily-load at a specific season. Let 𝑅 be the irregular component.
Finally, we can let the building load be 𝐷 (𝐶 (𝑝), 𝑅).

We now present DAST, a new augmentation scheme based on
time-series decomposition for building loads. Intrinsically, given
building load data of 𝐷 (𝐶 (𝑝), 𝑅) for a time period of [𝑡0, 𝑡𝑘 ], DAST
can generate 𝐷′ (𝐶 (𝑝), 𝑅) in period [𝑡0, 𝑡𝑛] where 𝑛 >> 𝑘 . DAST
(Figure 5) has a Load Decomposition module §5.1 to decompose
𝐷 into 𝐶 (𝑝) and 𝑅. Then, DAST has three augmentation modules:
Daily-load Augmentation §5.2 , Seasonal Context Augmentation
§5.3, and Irregular Augmentation §5.4, for 𝑝 , 𝐶 (·), and 𝑅, respec-
tively. Finally, DAST has a Component Combination module §5.5
to combine the augmented components.

Input
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Figure 5: The pipeline of decomposition-based load data aug-
mentation (DAST).

Note that after our analysis, we have two repeated and peri-
odic components (daily-load and seasonal context), as well as an
irregular component. Individual decomposition, augmentation, and
combination algorithms of these types of components have been
widely studied [3, 13, 23, 25]. We leverage existing algorithms and
briefly introduce these five modules.

Load Decomposition: This module decomposes 𝐷 into 𝐶 (𝑝)
and 𝑅. This requires capturing 𝐶 (𝑝), 𝑅 and avoiding misidentifi-
cation between 𝐶 (𝑝) and 𝑅, for example, the identification of a
morning catch-up load into a noise. We develop a decomposition al-
gorithm based on the season-trend decomposition (STL) algorithm
[6], which is a classical time-series decomposition method.

Daily-load Augmentation: Based on 𝐶 (𝑝) in one season-
context, this module generates a set of synthetic daily-load 𝐶 (𝑝′).
This requires𝐶 (𝑝′) to span diversity (to enrich the daily-load data),
yet maintain fidelity (to avoid deviating from the true daily-load
distribution). We adopt a pattern-mixing method, which is widely
used to generate diverse time-series. To achieve more fidelity, we
develop an additional clustering-based mechanism for clustering
similar 𝑝 before conducting pattern mixing.

Seasonal Context Augmentation: This module generates
𝐶¬𝑎 (𝑝) given 𝐶𝑎 (𝑝), where 𝐶𝑎 is one of the four seasonal con-
texts and 𝐶¬𝑎 is any one of the other seasonal contexts. This is a
data transformation problem and the transformation process con-
tains multiple operations, e.g., scaling, warping, and others. We
develop a learning-based domain translation [50] algorithm, which
is widely used for transforming the context of data (in DAST, the
seasonal contexts). In addition, to improve fidelity, a multi-tasks
algorithm is adopted to select training data to train the domain
translation models.

Irregular Augmentation: This module generates irregulars
of different sizes, i.e., the length of spikes or dips. This requires
estimating the underlying probability distribution of the size of the
irregulars. We adopt a kernel density estimation (KDE) scheme.

Component Combination: This module loads the augmented
𝐶 (𝑝) and 𝑅 into a building load 𝐷′. This requires fidelity, i.e., we
should avoid a situation where the meaning of the 𝐶 (𝑝) is altered
after combining𝑅. We develop a contrastive learning [37] algorithm,
which is widely used in decomposition-based augmentation for
judging whether or not the combination is acceptable.
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5 DECOMPOSITION-BASED DATA
AUGMENTATION SCHEME

5.1 Load Decomposition
Given the load time-series data of a target building: {𝐷}, we need
to decompose {𝐷} into {𝐶 (𝑝)} and {𝑅}, i.e., the sequence of daily
profiles and irregulars. Our goal is to minimize both distance of the
decomposed𝑅′ and the real𝑅, as well as the distance of decomposed
𝐶 (𝑝)′ and real 𝐶 (𝑝), i.e.,

1
|{𝐷}|

∑︁
𝐶 (𝑝 ),𝑅∈{𝐷 }

[𝛼 × 𝑙 (𝐶 (𝑝)′,𝐶 (𝑝)) + (1 − 𝛼) × 𝑙 (𝑅′, 𝑅)] (1)

, 𝑙 (·, ·) denotes the loss function and we use MAE in this work, 𝛼
is the weight of the two components (we set 𝛼 as 0.5). Note that 𝛼
can be carefully set, and we will put it to future work.

Time-series decomposition has model-free and model-based so-
lutions. Model-free methods do not make assumptions on patterns
in the data, whereas model-based methods assume that the data has
intrinsic patterns. Model-based methods model the patterns and
conduct decomposition based on patterns. Clearly, building load
data have patterns. Therefore, we propose a model-based method.
We leverage the idea of the classical season-trend decomposition
STL method, which has been successfully been used to decompose
seasonality and noises in other time-series, such as𝐶𝑂2 and electric-
ity prices. Our rationale follows STL, i.e., to model the seasonality
component 𝐶 (𝑝), and the remainder is 𝑅. Our algorithm works as
follows.

Step 1: DAST focuses on buildings with clear daily seasonality;
hence, the season window is 24h. Then, based on the given 𝐷 , a
LOESS regression is applied for each timestamp (e.g., all the loads
at 8 am in {𝐷}); hence, a smooth general daily seasonal pattern
is extracted. Note that, all of the processes in this step follow the
original STL algorithm.

Step 2: Considering that there are different 𝑝 in {𝐷}, i.e., dif-
ferent daily behaviors. This corresponds to seasonality fluctuation
[9, 41] in the time-series decomposition field, and one widely used
algorithm is RobustSTL [41]. In RobustSTL, an additional daily
seasonality calibration mechanism is designed, where one 𝐶 (𝑝) is
calibrated by the weighted linear combination of the load within 𝑘
neighbor 𝐷 , and the closer time points and similar 𝐷 are assigned
greater weights. We drew inspiration from RobustSTL to adapt
to the characteristics of the building domain, where the calibra-
tion will skip the neighborhood 𝐷 if the type of day is different
(weekend/holiday and weekday), since this factor greater affects

the accuracy of decomposition in the buildings (e.g., the accuracy
on Monday and Friday).

Decomposition evaluation: To validate the effectiveness of
our algorithm, we simulate {�̂�} by the pre-prepared { ˆ𝐶 (𝑝)} and
{𝑅}, i.e., the de-noised load by the moving-average (the same as
the statistical method in the irregulars analysis) and simulated
irregulars. Note that this is a common evaluation methodology
because it is difficult for a real-world time-series to have the ground
truth on the decomposed components [41]. For { ˆ𝐶 (𝑝)}, we can get
various load profiles from Genome buildings. For {𝑅}, we simulate
three types of {𝑅} 1) white noise, 2) obvious spikes/dips but (with
the statistic on frequency from the analysis section), and, 3) a mix
of the first two types. These synthetic irregulars are widely used to
evaluate decomposition algorithms. We conducted the evaluation
in the 300+ studied buildings, which were education, public, and
office buildings.

As shown in Figure 6, our decomposition algorithm achieves
better accuracy than the baseline RobustSTL1 in all three types of
buildings, as well as in the three types of simulated testing data.
An example of a period of decomposition is shown in Figure 7.

The subsequent augmentations are based on the decomposed
{𝐶 (𝑝)′} and {𝑅′}.

5.2 Daily-load Augmentation
For a target building, given a period of a decomposed seasonality
component, i.e., {𝑝} 2, our goal is to generate synthetic 𝑝 , and the
density 𝑝 (𝑝) can best approximate 𝑝 (𝑝) for the target building (in
the same season). This process can be formulated as:

min
𝑝

𝐷𝑖𝑠 (𝑝 (𝑝) | |𝑝 (𝑝)) (2)

, where 𝐷𝑖𝑠 (·, ·) is a measure of distance between distributions and
we apply the maximum mean discrepancy (MMD) [38].

Considering that the size of {𝑝} may be insufficient for the
learning-based augmentation scheme, then the 𝑝 augmentation
scheme would resort to a conventional transformation, such as
random transformation or pattern mixing. Random transformation
involves conducting the operations like rotation and scaling with-
out making assumptions about the inherent pattern, while pattern
mixing involves combineing two or more similar samples to pro-
duce new ones [22]; hence, synthetic data can be generated with
high fidelity.

One challenge in applying pattern mixing is that similar 𝑝 needs
to be identified in advance. To address this, we develop a 𝑝 cluster-
ing sub-scheme to group the similar 𝑝 that correspond to similar
behaviors. This sub-scheme helps in identifying patterns that can
be mixed effectively during augmentation. Therefore, our 𝑝 aug-
mentation process has two steps:

𝑝 clustering: A clustering mechanism is designed to cluster
the similar 𝑝 . We use the k-means algorithm and choose DTW
(Dynamic time warping) as the similarity metric, which can handle
temporal distortions and find the best alignment of two 𝑝 . Note
that the number of clusters depends on the size of {𝑝}, i.e., the
given time-series from the target building. We leverage the Calinski-
Harabasz (CH) Score to set the cluster number, which offers a
1We omit the results of the original STL algorithm which had a poor performance.
2We omit the seasonal context𝐶 ( ·) because they are the same in this part.
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trade-off between separation and cohesion. Note that, we conduct 𝑝
clustering on the source dataset3, and that all the 𝑝 are normalized
by its peak load. As a result, we obtained 16 clusters. Therefore,
each 𝑝 in the set {𝑝} from the target building can be associated
with one of these clusters with the shortest distance to 𝑝 .

Pattern mixing method:We apply a classical pattern mixing
method called SMOTE [5] to mix the data in the magnitude domain.
This is how it works: First, one 𝑝 is selected from the given set {𝑝},
and another 𝑝𝑐 is sampled from the cluster 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑝 corresponding
to 𝑝 . Then, a new 𝑝′ is generated by

𝑝′ = 𝑝 + 𝜆(𝑝 − 𝑝𝑐 ) (3)

, where 𝜆 is a random sampling value to give the synthetic data
diversity (with a range of (0, 1] [5]). Finally, the synthetic {𝑝′} are
generated for the target building.

5.3 Seasonal Context Augmentation
For a target building, given a short period of decomposed {𝐶𝑎 (𝑝)}
corresponding to one specified season context 𝐶𝑎 (·), our goal is to
generate𝐶¬𝑎 (𝑝), i.e., the synthetic daily profiles in other season con-
texts, and the density 𝑝 (𝐶¬𝑎 (𝑝)) can best approximate 𝑝 (𝐶¬𝑎 (𝑝))
for the target building. It can be formulated as:

min
𝑝

𝐷𝑖𝑠 (𝑝 (𝐶¬𝑎 (𝑝)) | | 𝑝 (𝐶¬𝑎 (𝑝))), ∀𝐶¬𝑎 ∈ 𝑈 −𝐶𝑎 . (4)

, where𝐷𝑖𝑠 (·, ·) represents the measurement of MMD. The Universe
𝑈 includes four seasonal contexts, i.e., spring, summer, autumn,
and winter (refer to ASHRAE [19])4.

The core of this task is to modify the 𝐶 (·) of 𝑝 . We suggest
that Domain Translation (DT) techniques are well suited for this
purpose. DT is a special GAN-based technique for finding mappings
of 𝑑𝑜𝑚𝑎𝑖𝑛1 ↔ 𝑑𝑜𝑚𝑎𝑖𝑛2 such that the mapping yields meaningful
pairings [30], and thus the input and output can share certain
content features, i.e., 𝑝 , even though they may differ in style, i.e.,
𝐶 (·). DTs are widely applied in seasonal/climate context change
and sensor-related time-series transformation scenarios [4, 17, 32].

Based on the previously introduced 𝑝 clustering, which groups
the normalized daily profiles, i.e., roughly seasonal-agnostic 𝑝 , we
can leverage DT to transform 𝐶 (·) for each 𝑝 cluster. Note that the
given {𝐶𝑎 (𝑝)} usually covers a small subset of the 𝑝 clusters; thus,
only the corresponding DT models need to be prepared for a target
building (details of the training are shown later).

DT-based 𝐶 (·) change. We leverage the idea from one classical
DT model, UNIT [31], which aims to embed the data from two
domains into a common shared latent space. We assume that this
idea is suitable for our scenario since our goal is to "translate" be-
tween𝐶𝑎 (·) and𝐶¬𝑎 (·) pair while sharing the same 𝑝 . Figure 8 (left)
shows the structure of domain translation. 𝐸1 and 𝐸2 denote two
autoencoders that project the 𝐶 (𝑝) from the associated domains
to a shared-latent space, which is the 𝐶-agnostic of the 𝑝 represen-
tation. Suppose 𝐶1 (𝑝) and 𝐶2 (𝑝) are two daily profiles with the
same type of 𝑝 . Ideally, 𝐸1 and 𝐸2 would encode them to the same
embedding that represents 𝑝 . This embedding can be translated
back to Domain 1 and Domain 2 by two specific generators 𝐺1 and
3We select multiple buildings from education, office, and public service as the source
buildings to support the learning-based augmentation schemes.
4Each season is represented by a three-month period. For example, the winter season
corresponds to (Dec, Jan, Feb), and so on.
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Figure 8: Seasonal augmentation process.

𝐺2, respectively. Moreover, there are discriminators 𝐷1 and 𝐷2 for
𝐺1 and 𝐺2 in GAN [21], and we omit them in Figure 8 for the sake
of brevity.

Note that all 𝐸𝑖 , 𝐺𝑖 , and 𝐷𝑖 are neural networks, and that the
learning objective of the DT model is to optimize the following
three associated loss functions.

1) Reconstruction loss: 𝐶 (𝑝) reconstruction can be denoted as
{𝐸𝑖 ,𝐺𝑖 }𝑖=1,2. That is, the generated ˆ𝐶 (𝑝) = 𝐺𝑖 (𝐸𝑖 (𝐶 (𝑝))) can be
regarded as to reconstruct the original 𝐶 (𝑝). Considering the time-
series property, we leverage both DTW and MAE to evaluate the
shape similarity of reconstruction. The loss function can be ex-
pressed as follows: here we use 𝑥 to replace 𝐶 (𝑝) for clarity, and 𝛼
is a hyperparameter (we set it as 0.5):

𝐿𝑅𝑒𝑐𝑖 (𝐸𝑖 ,𝐺𝑖 ) = 𝛼 · 𝐷𝑇𝑊 (𝑥, 𝑥) + (1 − 𝛼) ·𝑀𝐴𝐸 (𝑥, 𝑥) (5)

2) GAN loss: to achieve the equilibrium point in the minimax
game for {𝐷𝑖 ,𝐺𝑖 }𝑖=1,2. And the loss function 𝐿𝐺𝐴𝑁𝑖

(𝐷𝑖 ,𝐺𝑖 ) follows
GAN [21].

3) Cycle-consistency loss: The core of DT is the invariance of
the domain theory in topology, i.e., 𝑥1 → 𝐺2 (𝐸1 (𝑥)) = 𝑥2 and
then 𝑥2 → 𝐺1 (𝐸2 (𝑥)) ≈ 𝑥1, in which the loss is denoted as
𝐿𝐶𝐶1 (𝐸1,𝐺2, 𝐸2,𝐺1) (details are given in [50]) and vice versa.

The total loss can be summarized as Formula 6. This ultimately
corresponds to solving the domain translation model 𝑓𝜃 according
to the optimization problem as Formula 7.

L𝑡𝑟𝑎𝑛𝑠 = 𝐿𝑅𝑒𝑐1 + 𝐿𝑅𝑒𝑐2 + 𝐿𝐺𝐴𝑁1 + 𝐿𝐺𝐴𝑁2 + 𝐿𝐶𝐶1 + 𝐿𝐶𝐶2 (6)

𝑓 ∗
𝜃
= argmin

𝑓𝜃
min

{𝐸1,𝐸2,𝐺1,𝐺2 }
max

{𝐷1,𝐷2 }
L𝑡𝑟𝑎𝑛𝑠 (7)

DTmodels training. For the target building, specified DT mod-
els are trained using data from the source building and only build-
ings with properties similar to those of the target building are
suitable. Thus, we seek another building-level clustering algorithm
to select the source buildings. We leverage a metadata clustering-
based method [49], which designs a two-phase clustering scheme
and performs well in building-related tasks. The metadata used in
our scenario is the building location, building type, and the id of
the 𝑝 clusters that are involved.

5.4 Irregular Augmentation
The decomposed irregular component {𝑅} (shown in Figure 7) is a
noise sequence that contains white noise and an irregular spike/dip
at each timestamp, with each irregular point having a certain size
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(or height). In this section, our goal is to estimate the underlying
distribution of the size of the irregulars for the target building,
while given a limited {𝑅} for the period of [𝑡0, 𝑡𝑘 ].

In existing works on decomposition-based time-series augmenta-
tion, the augmentation schemes for irregular component is usually
based on various statistics-based methods [3, 25]. We adopt kernel
density estimation (KDE), a nonparametric statistics method, to
estimate the probability density function (PDF) by setting a kernel
function for each given piece of data. KDE is used in scenarios
where the samples are limited and the overall distribution is not
the normal distribution. We use the Gaussian distribution as the
kernel function, which is widely used in KDE. After fitting the KDE
model using the given {𝑅}, we can sample the irregulars for the
generated {𝑅′} for a long period.

5.5 Augmented Components Combination
Given the synthetic daily profiles {𝐶 (𝑝)} and irregular sequences
{𝑅} (𝑅 is one day in length), the combinations are denoted as 𝐷 =

𝐶 (𝑝) + 𝑅. Our goal is to recognize and remove the low-fidelity 𝐷′,
and the remaining 𝐷 can then reproduce the real distribution, i.e.,

min
𝑝

𝐷𝑖𝑠 (𝑝 (𝐷) | |𝑝 (𝐷)) (8)

, where 𝐷𝑖𝑠 (·, ·) is the MMD measurement.
We argue that a 𝐷 is certainly low-fidelity if the 𝑅 alters the

meaning of𝐶 (𝑝). For example, if an evident dip irregular is mistak-
enly combined with the morning catchup, it can change the overall
daily profile pattern 𝑝 . Consequently, the new pattern may become
unreasonable or fall outside the scope of the target building. Since
it is difficult to model the relation of various 𝐶 (𝑝) and 𝑅, we seek a
learning-based method for recognizing such 𝐷′.

The existing solutions can be broadly categorized under two
directions: supervised learning and unsupervised learning. Super-
vised learning methods, like time-series classification, have the
ability to determine whether or not a given 𝐷′ is low-fidelity. How-
ever, these methods require labeled data, which necessitates domain
expertise for accurate labeling.

Considering that alterations should be avoided for 𝐶 (𝑝) after
merging 𝑅. This means that the representation of 𝐶 (𝑝) + 𝑅, i.e., 𝐷 ,
should have a similar representation as that of 𝐶 (𝑝). In unsuper-
vised learning methods, contrastive learning (CL) is a suitable class
for learning data representation. CL leverages positive and negative
sample pairs to learn the representation of the sample, with the
goal of making the representation of similar samples similar. The
core of the CL task is: 1) to design the positive and negative data
pair, i.e., (𝑥, 𝑥+) and (𝑥, 𝑥−), corresponding to short distance and
large distance, respectively; and 2) to train the discriminator model,
i.e., a binary classification model, to judge whether or not the input
pair is similar (i.e., positive). Note that CL is widely used for data
augmentation scenarios in which data need to be combined [18, 26].

We develop the following contrastive learning scheme.
1) Positive/negative data pair definition.We define a real𝐷 as hav-

ing less distance with its decomposed 𝐶 (𝑝), corresponding to (𝑥+,
𝑥), respectively. And there is a large distance between the decom-
posed𝐶 (𝑝) and that added with random residuals:𝐶 (𝑝) +𝑅𝑅𝑎𝑛𝑑𝑜𝑚 ,
i.e., (𝑥 , 𝑥− ). Note that, when a 𝐷 is decomposed to 𝐶 (𝑝) and 𝑅, one
positive pair is collected, and we can simulate the multiple negative

Table 2: Target building Dataset specification

Building The ID in Genome Location Floor area (sqft)
A Rat_public_Emilee Washington 22500
B Rat_public_Isabel Washington 16576
C Fox_office_Joy Tempe 70837
D Fox_education_Virginia Tempe 12773
E Bear_education_Iris Berkeley 58733
F Peacock_education_Ophelia Princeton 120836

pairs (In this work, we only simulate one negative pair for a positive
pair to avoid sample imbalance).

2) Discriminator model. We collect the pairs from the source
buildings to train a binary-classification model (denoted as 𝑓𝜃 (·, ·)).
The loss function is a triplet loss [37] (a classical loss func-
tion in CL), as L(𝑥, 𝑥+, 𝑥−) =

∑
𝑥∈X𝑚𝑎𝑥 (0,



𝑓 (𝑥 ) − 𝑓 (𝑥+)


2
2 −

∥ 𝑓 (𝑥 ) − 𝑓 (𝑥−)∥22 + 𝜖), where function 𝑓 (·) encodes 𝑥 into an em-
bedding vector. In the inference phase, the pair of 𝑑𝑎𝑡𝑎𝑝𝑎𝑖𝑟 =

(𝐶 (𝑝)′ + 𝑅′,𝐶 (𝑝)′) is input into 𝑓𝜃 . Then 𝑓𝜃 classifies 𝑑𝑎𝑡𝑎𝑝𝑎𝑖𝑟 as
positive or negative pair, i.e., whether the synthetic data is consid-
ered high-quality or not.

Moreover, to enhance the effectiveness of usage, we perform
the aforementioned CL tasks separately on weekdays, weekends,
and holidays. After this process, we filter out the high-fidelity daily
profile set {𝐷} for the target building. For applications that require
multiple days of load profile, we carefully concatenate {𝐷} with
the appropriate order, e.g., ensuring that every five-day weekday
period was followed by a two-day weekend period.

6 EVALUATION
In this section, we first present the methodology for conducting
the evaluation, and then present the results of the quantitative and
qualitative evaluations of the generated synthetic data. We also
present an ablation study to show the key components contributing
to the performance of DAST.

6.1 Methodology
Datasets:We evaluate DAST with the Genome dataset. To evaluate
the effectiveness of DAST, our rationale was to select the target
buildings according to different dimensions: building type, location
(i.e., climate condition), and building size. Moreover, the target
buildings should have a very low percentage of missing data, which
is important for evaluating the quality of the generated data. Finally,
in this work, we present the results of DAST on six representative
target buildings, with details given in Table 2. The analysis and
evaluation of more target buildings will be given in future work.

Baseline methods: We compare DAST against three widely
used time-series generation methods as baselines. All of these base-
lines have been applied to augment building or energy data. (1)
RCGAN [10], i.e., Recurrent Conditional GAN, a benchmark model
for time-series data augmentation. RCGAN adopts RNN in Vanilla
GAN. It is widely used to generate synthetic electrical load time-
series [45]. (2) cVAE [27], i.e., conditional variational autoencoder.
In the building energy field, it is applied to generate data for specific
types of months [11]. (3) TimeGAN [46], a state-of-the-art GAN
that incorporates temporal dynamics. TimeGAN has been used in
the building field, e.g., heating load prediction [48].
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Figure 9: The MMDmeasurement under the different sizes of given data for six target buildings (the lower the better).
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Figure 10: t-SNE visualization.

Evaluation Metrics: To assess the quality of the generated
data, we observe two aspects that need to be evaluated in time-
series data augmentation tasks: (1) Fidelity: samples should be
indistinguishable from the real data. For a quantitative measure
of similarity, we apply Maximum Mean Discrepancy (MMD) [38].
(2) Diversity: samples should be distributed to cover the real data.
We apply t-SNE [39] analysis, a statistical visualization method, on
the original and synthetic data. This visualizes the extent to which
the distribution of the generated samples resembles that of the
original in two-dimensional space, giving a qualitative assessment
of diversity.

Experiment Setup: We conducted data augmentation for six
target buildings listed in Table 2. Each specified building was con-
sidered as the target building, with the remaining 300+ buildings
serving as source buildings for supporting the learning-based aug-
mentation sub-tasks . To assess the effectiveness of data augmen-
tation, different sizes of the given data were used from the target
building, specifically 15 days, 30 days, and 90 days.

6.2 Overall Performance
6.2.1 Improvement in Fidelity. Figure 9 compares the fidelity of
the augmented data of DAST and the baselines based on MMD (the
lower the better), under different sizes of given data from the target
building. Figure 9 (a) shows the results when the given data size is
15 days. We can see that DAST outperforms the other baselines on
all six buildings. On average, the MMD of DAST is 0.77, while for
the other three methods, it is 1.77, 1.46, and 1.55, respectively. Thus,
DAST achieves an improvement in accuracy (i.e., the distance of the
distributions between real and synthetic data) of 56%, 46%, and 50%
compared to CVAE, TimeGAN, and RCGAN, respectively. More
specifically, in building 𝐷 , the MMD value of DAST is 0.31, while
the MMD of CVAE, TimeGAN, and RCGAN is much larger, i.e., 2.49,
2.13, and 1.62, respectively. This is because 𝐷 has diverse patterns
in the given data, and the seasonal variation is also obvious. It is
quite difficult for the baselines to generate high-fidelity data if the
generative model is only trained on the given 15-day data.

We see that DAST still outperforms the baselines when the size
of the given data is 30 and 90 days (as shown in Figure 9 (b) and

Synthetic data for Winter

Real data in Winter

The given data in Summer

Figure 11: An example of two weeks of synthetic data.

(c)). We see an improvement in the performance of all the methods
when the volume of the given data increases. For a given data size of
30 days, the MMD of DAST is 0.52, with the figures being 1.31, 0.92,
and 0.99 for the other three methods. DAST achieves an average
improvement of 49% compared to the baselines. For a given data
size of 90 days, the MMD of DAST is 0.37, while the MMD of the
baselines is 0.91, 0.58, and 0.61, respectively. DAST achieves an
average improvement of 44% compared to the baselines.

6.2.2 Qualitative assessment on diversity. The t-SNE visualization
of the distribution of the generated time-series and the distribution
of the real data are shown in Figure 10. Specifically, t-SNE converts
the daily profiles into a 2-D scatter plot, where each scatter repre-
sents one sample. In our settings, red denotes synthetic data and
blue denotes original data. We then check whether the points with
two different colors overlap well. This evaluation methodology is
widely used in data augmentation research in the AI community.
As a result, we can observe that the proposed DAST can achieve
better performance (i.e., the red points and blue points can have a
better overlap) than other baseline methods. We present a real case
of two weeks of synthetic data (shown in Figure 11) for Building D.
The results show that DAST can augment high-quality data, even
when only a two-week dataset was provided.

6.3 Model ablation study
We now study our designs for each individual component of DAST.
We implemented five breakdown versions of DAST to take a closer
look at the contribution of each component: DAST-A has all the
daily pattern 𝑝 and seasonal context 𝐶 augmentation schemes, but
without decomposition; DAST-B1 is DAST without daily pattern 𝑝

augmentation; DAST-B2 is DAST without seasonal context 𝐶 aug-
mentation; DAST-B3 is DAST without irregular 𝑅 augmentation;
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Figure 12: The ablation study on different sizes of given data.
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Figure 13: The ablation study on the three building types.

DAST-C is DAST without filtering mechanism in augmented com-
ponent combination. Hence, all of the combinations are acceptable.

Figure 12(a-c) shows the results of the comparison of DAST and
the other variants under different sizes of given data. We see that
DAST achieves the best performance and that the performance of
the other versions of DAST- decreases by 13% to 63%. Moreover, the
performance of DAST-B2 is the worst of all of the settings of the
given days. Thus, the contribution of seasonal context augmentation
is the most important if only limited data from the target building is
given. Figure 13(a-c) shows the results of the comparison of DAST
and the variants in different building types. DAST outperforms
the other DAST- schemes in the three different building types,
especially in education buildings.

These results show that our components are necessary and that
our designs successfully improve the quality of the synthetic data.

7 CASE STUDY: LOAD FORECASTING TASKS
We present a case study where we use our DAST prototype to
support building load forecasting (BLF) tasks, and we target two
main tasks. Our results demonstrate that our data augmentation
approach can benefit both tasks when the length of the given data
for a target building is relatively short.

• Task 1 - Data-driven BLF model training: The synthetic
time-series should be as useful as the real data when used
for the same predictive purposes (train-on-synthetic and
test-on-real, i.e., TSTR [14]).

• Task 2 - The differentiation between multiple trained
BLF models: With the rapid growth of ML, it is easy to
collect massive trained ML model files (e.g., .h5 file). This
is common in the AI community. Thus, the performance
of the trained models5 on the target building needs to be
differentiated (i.e., ranked).

BLF models and the tested building:We implement two 24-
hour ahead data-driven BLF models, i.e., an RNN-based model and
5In this case study, the parameters of the trained BLF models are fixed, i.e., they will
not be continually trained on the synthetic data.
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Figure 14: The error of the models trained on synthetic data.
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Figure 15: The accuracy of the ranking (the higher the better).

an LSTM-based model, which are widely used for building electrical
load forecasting. For task 2, we simulate the trained BLF models by
training the two models on 15 different buildings in Genome and
then collect 2 × 15 = 30 trained models. The features needed for
these ML models are regular: time-related (one-hot encoding of the
day of the week and hour index) and last 24-hour load history.

We select Building C (in Table 2) to conduct the case study be-
cause the quality of the synthetic data for that building is average
(the MMD result) among the studied six buildings. We argue that
this means that Building C represents a general case of the useful-
ness of the synthetic data generated by DAST. As always, we set
the start of the given data to 01.01.2016 (the start of the holistic data
trace) and set the given data from building C as 15 days, 30 days, 90
days, and 180 days, respectively. For example, if the given data is
from 01.01.2016 to 02.01.2016, then the remaining data would cover
the period from 02.01.2016 to 12.31.2017.

Metrics: In task 1, the accuracy of the BLF model is CV-RMSE.
In task 2, we introduce the Jaccard similarity coefficient (denoted
as 𝐽𝑘 ) to evaluate the similarity between the the estimated rank
and actual rank of the top-𝑘 model. For example, the estimated
rank is 𝑀1, 𝑀3, 𝑀5, ..., and the actual rank is 𝑀1, 𝑀3, 𝑀2, .... Thus,
the Jaccard similarity coefficient between the two top-3 model sets
{𝑀1, 𝑀3, 𝑀5} and {𝑀1, 𝑀3, 𝑀2} is calculated as: 𝐽3 = |𝑟1∩𝑟2 |

|𝑟1∪𝑟2 | =
2
4 =

0.5. In our case study, we use 𝐽5.
The results of the two tasks: For task 1, Figure 14 shows the

accuracy of the two BLF models (i.e., RNN and LSTM), in which
the training data is generated by four different data augmentation
methods, i.e., DAST, and the other three introduced baselines. We
also draw the line of acceptable accuracy, i.e., CV-RMSE ≤ 30% for
engineering purposes (defined in ASHRAE [8]). We observe that
for both BLF models, the accuracy based on DAST is better than
the accuracy based on the other three data augmentation baselines,
which shows that DAST outperforms other baselines in task 1. In
the RNN model, the CV-RMSE of DAST is 31.1%, 24.1%, and 15.1%
for the given sizes of 30 days, 90 days, and 180 days, respectively. In
general, the CV-RMSE decrease of DAST is 49.2%, 32.9%, and 56.4%
compared to that for RCGAN, TimeGAN, and CVAE, respectively.
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For task 2, Figure 15 shows the accuracy of the rankings of
the trained models (top-5) based on different data augmentation
methods. The 𝐽5 of the DAST-assisted ranking is 0.67, 0.67, 0.67,
and 1.0 for different given data sizes. DAST outperforms baselines.
For example, when the given data of the building is from 01.01.2016
to 01.15.2016, the 𝐽5 of RCGAN, TimeGAN, and CVAE, are 0.11,
0.25, and 0. This reveals that the capacity of the RCGAN-based and
CVAE-based testing is close to random.

8 CONCLUSION
In this paper, we presented DAST, a decomposition-based data
augmentation scheme to augment time-series building data. As
compared to GAN-based methods, DAST fits the scenario with in-
sufficient data distributions, e.g., new buildings with insufficient
data collection periods. In practice, decomposition-based methods
have been widely applied to various scenarios. Such a method is
scenario-dependent and the challenges are to carefully analyze
prior knowledge on decomposable components and to develop ap-
propriate decomposition and augmentation schemes. We overcame
these challenges by analyzing load data from a large number of
buildings and the careful design of DAST. Our evaluation of DAST
using real-world data demonstrated that DAST outperforms state-
of-the-art baselines and can successfully augment data to support
various machine learning tasks in building load forecasting.
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