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‘ Background Nt

= Time-series building load data

o The fundamental of many applications, such like load forecasting, etc.
o Load data is collected gradually over time.

Data collection from 13 Oct ~ 30 Oct 2022
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= Building data Augmentation

o ML-based applications require a large amounts of data for training/testing ML model.
o Data augmentation (DA) scheme is necessary.




‘ Existing Data Augmentation scheme &

= Most are based on generative models, i.e., GANs.
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‘ Existing Data Augmentation scheme &

A long period, usually year-level
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‘ Existing Data Augmentation scheme &
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The problem under &
insufficient time coverage

Step1:|
Collection = only two weeks

Target building JanuaLme December
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However, the collection period can be insufficient time coverage,
especially for the new buildings.




‘ The problem under
insufficient time coverage ©

distributions




'The problem under &
insufficient time coverage
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Directly applying GAN is not suitable for this scenario.




Potential Approach:

Data Augmentation based on
Time-series decomposition




Time-series decomposition

= Time series decomposition assumes that the time-series can be
regarded as a collection of several components.

- ) Example: “Car Sales in the USA”

The Definition [1]: 1:222:Original Time-series
« Trend: long-term progression_‘mooo' /—/_/\//

« Seasonality: repeated and .
periodic fluctuations. ) .

0.9

 Irregular: irregular inﬂuences,‘ i;WWWMWWVVWMWW
e.g., hoise. 094

G Y, 1994 1999 2004 2009 2014 2019

[1] M. West. 1997. Time series decomposition. Biometrika (1997).
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‘ Decomposition-based Data augmentation &

_ The rationale:

Augmenting the data of each
component can be a more
targeted process.
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'Does these components exist in building &
load data?

a.
Trend 7? - Ana\yzed daﬁ‘\d‘uﬂgs from
- 1 407 USA bul 2]
Seasonality ? Genome dataset |
ATA
Irregular ? @G

[2] C. Miller, A. Kathirgamanathan, et al. 2020. The building data genome project 2, energy meter data from the ASHRAE
great energy predictor |l competition. Scientific data (2020).
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'Does these components exist in building &

load data”?

Trend )
Seasonality

Irregular

- e.g., the rate at which equipment is aging.

13



'Does these components exist in building &
load data”?

Trend

: ~ Daily-level (Daily load)
Seasonality )

~ Yearly-level (Seasonal contexts)
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'Does these components exist in building &

I O a d d ata ? Panther_office_Catherine: Orlando, FL
Irregular
Trend W
Seasonality Aug. 30

Irregular B) ., Reflects noises for a short duration, i.e.,
spike/dip loads within a stable load period
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- R
'Analysis Summary Tips: X

1. All the components exist in the load
* MWMM
A

- decomposition fits our scenario.

r | ™
Trend Seasonality Irregular
- Daily load - Noise

- Seasonal context
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‘ Analysis Summary

*

D,
Tips: Q'bé
1. All the components exist in the load
- decomposition fits our scenario.

2. Seasonality and Irregular are more
obvious.

—
Seasonality Irregular
- Daily load - Noise

- Seasonal context

This work focus on

these three.
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Data Augmentation scheme
Design




Design Overview
Goal

&

o To minimize the distance between the synthetic load and the real data,
given the target building with an insufficient distribution of data collection.

Decomposition-based augmentation scheme (DAST)
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‘ Step 1: Load time-series decomposition

= Challenge 1: Decompose the
sequence of { D } into { C(p) }
and { R}
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‘ Step 1: Load time-series decomposition

= Challenge 1: Decompose the
sequence of { D } into { C(p) }
and { R}

= Solution 1: A classical
season-trend decomposition
(STL) method, with a
calibration for day type.
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Step 2: Augmentatlon for the components &
(p)

nefl [l ne=ny

Daily pattern Season context Irreqular
augmentation A) augmentation R augmentation

(P

= Challenge 2: Minimize the distance between the augmented
component and the real ones.
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Step 2: Augmentatlon for the components &

eyl
~

Solution:

A k-means clustering to
recognize the daily patterns.

* A classical Pattern mixing
method to generate daily
patterns.

(p)

ﬂ” S

Solution:

* A learning-based domain
translation algorithm to learn
transformation operations.

* A metadata-clustering method
to search the training data.

N\ﬂ

Solution:

A statistics-based
method (KDE)

Challenge 2: Minimize the distance of the augmented component

and the real ones.
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‘ Step 3: combination N
, Augmented Augmented é(p) Al:'gme';ted R
pattern J‘/L context irregular W
’ e

D’(C(p), R)
Synthetic Daily load

= Challenge 3: To remove the low-fidelity D’
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Step 3. combination

Solution:

« A contrastive learning-based module
to learn the relation of ~ p and , and
then recognize the low-fidelity D’ based
on binary-classification.

D’ (C(p),R)
Synthetic Daily load

Challenge 3: To remove the low-fidelity D’
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'Evaluation Setup

= Dataset
o Six buildings according to different dimensions:
= building type, location, and building size.
= Settings of given data size
o Two weeks / one month / three months

= Baselines:
o RCGAN

&

Building The ID in Genome Location | Floor area (sqft)
A Rat_public_Emilee Washington 22500
B Rat_public_Isabel Washington 16576
C Fox_office_Joy Tempe 70837
D Fox_education_Virginia Tempe 12773
E Bear education_Iris Berkeley 58733
F Peacock_education_Ophelia | Princeton 120836

= RCGAN adopts RNN in Vanilla GAN, a benchmark model for time-series data augmentation.

o cVAE

= conditional variational autoencoder. It can generate data for specific types of months.

o TimeGAN
m A state-of-the-art GAN for time-series scenarios.
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‘ Improvement of DAST &

= Qualitative evaluation:
o t-SNE visualization

= Quantitative evaluation:
o MMD (maximum mean discrepancy),
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Notably better overlap

with the original data.

Reduce the distance (distribution between real
data and synthetic data) by 49%.
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'Case study: the benefit to building load &
forecasting (BLF) tasks

= Task 1: BLF model training
o Use DAST to support RNN, LSTM training
o Train-on-synthetic and test-on-real (TSTR)

= Task 2: Trained BLF model festing

o Differentiate the performance of 30 BLF
models for a target building.

o Top-5 ranking.
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Accuracy improved by 46% and 48% for RNN /LSTM. Ranking accuracy improved by 64%.
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- R
' Conclusion 5

—

We proposed DAST, a decomposition-based data augmentation
scheme for insufficient data distribution scenario.

We analyzed decomposed components in real buildings and
developed appropriate augmentation schemes.

We conducted qualitative and quantitative experiments to assess
the quality of generated data.

We conducted case study on building load forecasting tasks.
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Thanks for listening!
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